Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii.
نویسندگان
چکیده
Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe(3+). Thus, competition between Fe(3+) and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn(2+), and Mn(2+). We found that all five of these metal ions partially inhibited uptake of (55)Fe-protochelin and (55)Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase.
منابع مشابه
Complete Genome Sequences of Azotobacter vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6
We report the complete genome sequences of Azotobacter vinelandii mutant strain CA6 and its parent wild-type strain, CA. When fixing nitrogen, strain CA6 displays slow growth and impaired molybdate uptake, tolerance to tungstates, and production of hydrogen gas, compared to results for strain CA. Comparing these genome sequences may provide a genetic basis for these mutant phenotypes.
متن کاملRepression of the Escherichia coli modABCD (molybdate transport) operon by ModE.
The modABC gene products constitute the molybdate-specific transport system in Escherichia coli. Another operon coding for two proteins which diverges from the modABCD operon has been identified. The first gene of this operon codes for a 262-amino-acid protein, designated ModE (28 kDa), and the second genes codes for a 490-amino-acid protein. ModF (54 kDa). The role of ModF has not yet been det...
متن کاملHeavy Metal Concentration from Shrimp Culture Ponds at Point Calimer Area
Palk strait estuarine water was highly polluted by Cu, Fe, Pb, Zn and Hg. The study was carryout the interactions between heavy metals and microorganisms. The study area paying attention on the role of probiotic bacteria such as Bacillus cereus, Aeromonas hydrophila, Pseudomonas aeruginosa, Azotobacter vinelandii, and Lactobacillus sp. to remove the metals from polluted nine aquaculture ponds t...
متن کاملTranscriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS.
We previously showed that in Azotobacter vinelandii, accumulation of polyhydroxybutyrate (PHB) occurs mainly during the stationary phase, and that a mutation in phbR, encoding a transcriptional regulator of the AraC family, reduces PHB accumulation. In this study, we characterized the roles of PhbR and RpoS, a central regulator during stationary phase in bacteria, in the regulation of expressio...
متن کاملCoordinated expression of fdxD and molybdenum nitrogenase genes promotes nitrogen fixation by Rhodobacter capsulatus in the presence of oxygen.
Rhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2000